![Speaker Photo](/sites/default/files/styles/content_width_mobile_min/public/uploads/sabinopietrangelo.jpg?itok=IZX556uk)
Transcranial Doppler (TCD) sonography is a specialized ultrasound technique that enables measurement of blood flow velocity from the basal intracerebral vessels. Use of TCD sonography is highly compelling as a diagnostic modality due to its safety in prolonged studies, high temporal resolution, and relative portability. Although TCD methods have been clinically indicated in a variety of cerebrovascular diagnostic applications, general acceptance by the medical community has been impeded by several critical deficiencies – including the need for a highly-trained TCD operator, operator dependent measurement results, and severe patient movement restrictions.
This work seeks to mitigate such limitations through the development of a wearable TCD ultrasound system, permitting untethered cerebrovascular monitoring with limited operator interaction. The prototype system incorporates a custom two-dimensional transducer array and multi-channel transceiver electronics, thereby facilitating acoustic focusing via phased array operation. Algorithmic vessel location and tracking further reduce operator dependencies by expediting vessel localization, systematizing vessel identification, and dynamically adapting to relative vessel position.
Validation of the prototype hardware and embedded signal processing implementations under flow phantom and human subject testing yields high correlation with accepted velocimetry methods. Vessel search and tracking functionality are also verified experimentally. Circuit integration is explored to further reduce instrumentation dimensions and power consumption.
This content is restricted to our MIG members and members of the MIT community. Please login or contact us for more information about our partner programs.